Applications of Doubly Efficient PIR

Ariel Hamlin!

Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA hamlin.a®@northeastern.edu

Abstract. Outsourced data is ubiquitous raises the privacy model in which a client must interact and
store data on a potentially untrusted server. Databases may be encrypted but usage in the form of
access patterns still may leak information about both data and queries. This motivates us to examine
techniques to conceal access patterns from an untrusted server. Doubly-Efficient Private Information
Retrieval (DEPIR) is one technique that allows a single server to perform an read with overhead (both
bandwidth and server computation) that is sub-linear in the database size.

In this thesis proposal, I will discuss three different applications of DEPIR for outsourced data use.
Private Anonymous Data Access (PANDA) uses techniques from DEPIR to achieve a multi-client
private and anonymous data access. Rewindable ORAM (R-ORAM) leverages DEPIR to provide a
variant of ORAM used in our Fully Homomorphic Encryption for RAM construction. Finally, I will
explore DEPIR’s applications to Distributed ORAM (DORAM) in the secure computation model.

1 Introduction

We have entered an era where most data has migrated to an outsourced cloud. This creates a privacy model
in which the person hosting the data is potentially untrusted and must be defended against. However, this
model may go beyond simple storage and support the usage of the data by one or more clients. This could
take the form of targeted queries to retrieve the medical records of a patient in a medical study, or a wider
demographic computation to compute the average number of cars in a Massachusetts household. It is possible
to encrypt the data to prevent the housing server to learn the contents, but simple encryption does not hide
the physical location which the data is accessed on the server. We call that location data for any access an
access pattern and there have been a litany of attacks [] that show query and data recovery are possible if
access patterns are leaked.

This motivates us to examine techniques to conceal access patterns from an untrusted server. Two such
techniques are Private Information Retrieval (PIR) and Oblivious RAM (ORAM), which at their simplest
forms, allows a client to retrieve a record from a untrusted server without revealing their access patterns.
There are key differences between the techniques: ORAM relies on computational assumptions and focuses
on optimizing the overhead needed to read each block, PIR on the other hand, can either be computational
or information theoretic and seeks to optimize the bandwidth for each block. As a result, PIR schemes often
require linear work in database size on the behalf of the server for a single access. This issue motivated [] to
introduce Doubly-Efficient Private Information Retrieval (DEPIR), which preserves the bandwidth efficiency
of basic PIR schemes and allows a single server to perform an access with work that is sub-linear in the
database size. This is accomplished by allowing some pre-processing on the contents of the database.

In this proposal, I will discuss my work that applies DEPIR (and DEPIR techniques) to a variety of
different settings:

1. Private Anonymous Data Access (PANDA) [12] seeks to allow multiple clients (a portion of which
may collude with the server) to perform accesses to a single server while preserving their privacy and
anonymity. We construct three versions of PANDA, a bounded read-only, a unbounded read-only, and
writable version using techniques drawn from DEPIR and using FHE to eliminate the usage of their new
assumption.

2. Rewindable Oblivious RAM (R-ORAM) [11] achieves a new variant of ORAM which allows the
server to ‘rewind’ to a previous state and allow executions to proceed creating a ‘fork’. We introduce two
versions of R-ORAM, initial-state (ISR-ORAM) and any-state (ASR-ORAM) which support rewinding

to different intermediary states. We use DEPIR directly in both constructions. This work was originally
part of the construction of Fully Homomorphic Encryption for RAM (RAM-FHE), but has applications
for multi-client ORAM.

3. Distributed ORAM (DORAM) [13] our construction builds on an existing multi-server ORAM
variant in which the client is executed as a secure computation between the servers. Our construction is
the first to achieve sublinear computation for the servers and constant rounds of communication. We also
provide a variant with better asymptotics when the number of reads is much greater than the number
of writes — we ‘MPC’-ify DEPIR to achieve this result.

2 Preliminaries

In this section, we provide several definitions and constructions of existing cryptographic primitives that we
leverage in this work. We begin with a brief summary of our notation.

We use the convention of 0-indexing, with [N] = {0,1,..., N — 1} as containing all whole numbers less
than N. Additionally, S x S’ denotes the Cartesian product of two sets. Bold letters v denote vectors,
subscripts v; indicate the i*" element of a vector, and (wi)l‘€[N] constructs a vector from an ordered list of
items wg, w1, ..., wy—1. The notation || denotes concatenation of bitstrings, sets, or vectors into a single
object of longer length containing the (ordered) union of all elements.

The notation x < D indicates taking a sample from a probability distribution D. By abuse of notation,

x < S indicates sampling from the uniform distribution over set S; we sometimes use z & S for emphasis. We
use ~ to indicate computational indistinguishability of two distributions; that is, D ~ D’ if no probabilistic
polynomial time adversary A has a noticeable difference in output when given a sample from D or D’. We
use |S| to denote cardinality of set S.

2.1 Doubly Efficient Private Information Retrieval

First introduced by Canetti et al. and Boyle et al. [1,4], Doubly Efficent Private Information Retrieval
(DEPIR) is a variant of PIR achieving sub-linear server work by allowing pre-processing of the database.
The major building block DEPIR is locally decodably codes (LDCs). Specifically, an application of Reed-
Muller Codes, which allows for smooth LDCs.

Definition 1 (Smooth LDC). A s-smooth, k-query locally decodable code with message length N, code-
word size M, with alphabet X is denoted by (s,k, N, M)x-smooth LDC and consists of a tuple of PPT
algorithms (Enc, Query, Dec) with the following syntax:

— Enc takes a message m € XN and outputs a codeword c € XM
— Query takes a index i € [N] and outputs a vector € = (x1,...,x) € [M]N
— Dec takes in vector codeword symbols ¢ = (cz,, ... ¢z,) € XN and outputs a symbol y € X

And has the following properties:
— Local Decodability: For all messages m € X1 and every index i € [N]:
Pr[Dec(Enc(m),) = m; : &<+ Query(i)] =1

— Smoothness: For all indices i € [N], a LDC is s-smooth if when sampling (x1,...,x) + Query(i),
(X1, ...,2k) is uniformly distributed on [N]° for every distinct subset of size s.

We now formally introduce DEPIR, in particular the secret key variant, called SK-DEPIR.

Definition 2 (Doubly Efficient PIR). A Doubly Efficient PIR (DEPIR) for alphabet X consists of a
tuple of PPT algorithms (KeyGen, Process, Query, Resp, Dec) with the following syntaz:

— KeyGen takes the security parameter 1* and outputs the key k

Process takes a key k, database DB € XN and outputs processed database DB

— Query takes a key k, database index i € [N] and outputs a query q and temporary state State
Resp takes a query q, processed database DB and outputs a server response c

— Dec takes a key k, server response c, temporary state State and outputs a database symbol y € X

And has the following properties:
— Correctness: For all DB € X and i € [N]:

k<« KeyGen (1)
DB « Process (k,DB)
Pr | Dec(k, State,¢) = DB; (¢, State) < Query (ki) | = 1

¢ < Resp (DNB7 q)

— Double Efficiency: The runtime of KeyGen is poly (\), the runtime of Process is poly (N, \), and the
runtime of Query, Dec is o (N) - poly (\), where N is the database size.

— Security: Any non-uniform PPT adversary A has only negl (\) advantage in the following security game
with a challenger C:
1. A sends to C a database DB € XV,
2. C picks a random bit b + {0,1}, and runs k + KeyGen (1)‘) to obtain a key k, and then runs

DB « Process (k,DB) to obtain a processed database DB, which it sends to A.

3. A selects two addresses i°,i* € [N], and sends (i°,i') to C.
4. C samples (g, State) < Query(k, i), and sends 1 to A.
5. Steps 3 and 4 are repeated an arbitrary (polynomial) number of times.
6. A outputs a bit b, and his advantage in the game is defined to be Pr[b = b'] —

o=

As shown in [1,4] we can achieve SK-DEPIR with sublinear or poly-log parameters.

Lemma 1. There exists SK-DEPIR schemes with the following parameters, where N is the database size
and X\ is the security parameter:

— Sublinear SK-DEPIR: For any € > 0, the running time of Process can be N1*¢ . poly(\), and the
running time of Query and Dec can be N€ - poly(A).

— Polylog SK-DEPIR: The running time of Process can be poly(\, N), and the running time of Query
and Dec can be poly(A,log N).

3 Private Anonymous Data Access

In this section we introduce Private Anonymous Data Access (PANDA). Starting with the primitive defini-
tions for Read-Only and Public-Writes PANDA from [12].

3.1 Read-Only PANDA.

In this section we describe our read-only PANDA scheme. We first formally define this notion. At a high
level, a PANDA scheme is run between a server S and n clients Cy,--- ,C,, and allows clients to securely
access a database D, even in the presence of a (semi-honestly) corrupted coalition consisting of the server
S and a subset of at most ¢t of the clients. In this section, we focus on the setting of a read-only, public
database, in which the security guarantee is that read operations of honest clients remain entirely private
and anonymous, meaning the corrupted coalition learns nothing about the identity of the client performed
the operation, or which location was accessed.

Definition 3 (RO-PANDA). A Read-Only Private Anonymous Data Access (RO-PANDA) scheme con-
sists of procedures (Setup, read) with the following syntax:

— Setup(1*,17,1*,D) is a function that takes as input a security parameter \, the number of clients n, a
collusion bound t, and a database D € {0,1}%, and outputs the initial server state Stateg, and client keys
ski,-- - ,sk,. We require that the size of the client keys |sk;| is bounded by some fized polynomial in the
security parameter A, independent of n,t,|D|.

— read is a protocol between the server S and a client C;. The client holds as input an address addr € [L]
and the client key sk;, and the server holds its current states Stateg. The output of the protocol is a value
val to the client, and an updated server state Statels.

We require the following correctness and security properties.

— Correctness: In any execution of the Setup algorithm followed by a sequence of read protocols between
various clients and the server, each client always outputs the correct database value val = Dygqr at the
end of each protocol.

— Security: Any PPT adversary A has only negl (\) advantage in the following security game with a
challenger C:

e A sends toC:
* The values n,t and the database D € {0,1}L.
x A subset T C [n] of corrupted clients with |T| < t.

x A pair of read sequences R® = (jlo,addr?)lglgq ,R! = (jll,addrll)lglgq (for some q € N) , where

(jlb, addrg’) denotes that client j} € [n] reads address addr? € [L].

We require that (jlo,addr?) = (jll,addrll) for every | € [q] such that j? € TV jl €T.
o C performs the following:

* Picks a random bit b < {0,1}.

x Initializes the scheme by computing Setup (1)‘7 1", 1t D).

* Sequentially executes the sequence R of read protocol executions between the honest server and
clients. It sends to A the views of the server S and the corrupted clients {Cj}jeT during these
protocol executions, where the view of each party consists of its internal state, randomness, and
all protocol messages received.

o A outputs a bit .
The advantage adv 4 (X) of A in the security game is defined as: adv (A) = |Pr[b/ = b] — %|.

Efficiency Goals. Since a secure PANDA scheme can be trivially obtained by having the client store the
entire database locally, or having the server send the entire database to the client in every read request, the
efficiency of the scheme is our main concern. We focus on minimizing the client storage and the client/server
run-time during each read protocol. At the very least, we require these to be ¢ - o (|D]).

In [12], we construct a bounded-collusion PANDA scheme, where we assume some upper bound ¢ on the
number of clients that collude with the server. The client and server efficiency scales linearly with ¢, but
is otherwise poly-logarithmic in the data size and the total number of clients. In particular, our PANDA
scheme allows for up to a poly-logarithmic collusion size ¢ while maintaining poly-logarithmic efficiency
for the server and the client. Our construction relies on the generic use of (leveled) Fully Homomorphic
Encryption (FHE) [7,17] which is in turn implied by the Learning With Errors (LWE) assumption [16]. Our
basic construction provides security against a semi-honest adversary.

We rely on an s-smooth, k-query LDC where s =) is set to be the security parameter. We think of the
server S as consisting of k' = k2t different “virtual servers”, where ¢ is the collusion bound. Each virtual
server contains a permuted copy of the LDC codeword under a fresh PRP. Each client is assigned a random
committee consisting of k out of k&’ of the virtual servers and gets the corresponding PRP keys. To retrieve an
entry from the database, the client runs the LDC local decoding algorithm, which requests to see k codeword
locations, and reads these locations using the virtual servers on its committee by applying the corresponding
PRPs. It also reads uniformly random locations from the k' — k virtual servers that are not on its committee.

In summary, we get the following theorem.

Theorem 1. Assuming the existence of FHE, there exists a (read-only) PANDA scheme with n clients, t
collusion bound, database size L and security parameter A such that, for any constant € > 0, we get:

— The client/server run-time per read operation is t - poly(\,log L).
— The server storage is t - L'T¢ - poly(\,log L).

3.2 PANDA with Writes.

We construct a PANDA scheme for public databases that supports write operations, but only guarantee
privacy of read operations, a primitive we call public-writes PANDA (PW-PANDA). Notice that this is the
“best possible” security guarantee when there is (even) a (single) corrupted client. (Indeed, as the database is
public, a corrupted coalition can always learn what values were written to which locations by simply reading
the entire database after every operation.) We note that it suffices to consider this weaker security guarantee
when all clients are honest, since any public-writes PANDA scheme can be generically transformed into a
PANDA scheme which guarantees the privacy of write operations when all clients are honest. Indeed, one can
implement a (standard) single-client ORAM scheme on top of the public-writes PANDA scheme, for which
all clients know the private client key. (We note that the transformation might require FHE-encrypting the
PANDA, to allow the server to perform operations on the PANDA which are caused by client operations on
the ORAM.)
We now formally define the notion of a public-writes PANDA scheme.

Definition 4 (Public-Writes PANDA (PW-PANDA)). A public-writes PANDA (PW-PANDA) scheme
consists of procedures (Setup, read, write), where Setup, read have the syntaz of Definition 3, and write has the
following syntaz. It is a protocol between the server S and a client C;. The client holds as input an address
addr € [L], a value v, and the client key sk;, and the server holds its current states Stateg. The output of
the protocol is an updated server state Statel.

We require the following correctness and security properties.

— Correctness: In any execution of the Setup algorithm followed by a sequence of read and write protocols
between various clients and the server, where the write protocols were executed with a sequence Q) of
values, the output of each client in a read operation is the value it would have read from the database
if (the prefix of) Q (performed before the corresponding read protocol) was performed directly on the
database.

— Security: Any PPT adversary A has only negl()\) advantage in the following security game with a
challenger C:

e A sends to C:
* The values n,t, and the database D € {0,1}L.
x A subset T C [n] of corrupted clients with |T| < t.
x A pair of access sequences Q° = (opl,val?,jlo, addr?)lSlSq ,Q = (opl,valll,jll7 3ddrll)1§l§q: where

(opl, val?,jlb, addr?) denotes that client jf’ performs operation op; at address addr? with value val?
(which, if op, = read, is L).
We require that (opl,val?,jlo, addr?) = (opl,valll,jll, addrll) for every l € [q] such that jlo € T\/jl1 e’r;
and (val?, addr?) = (valll, addrll) for every | € [q] such that op; = write (in particular, write operations
differ only in the identity of the client performing the operation).
o C performs the following:

* Picks a random bit b < {0,1}.

x Initializes the scheme by computing Setup (1’\7 17, 1%, D),

x Sequentially executes the sequence QP of read and write protocol executions between the honest
server and clients. It sends to A the views of the server S and the corrupted clients {C} }jeT during
these protocol executions, where the view of each party consists of its internal state, randomness,
and all protocol messages received.

o A outputs a bit V.

The advantage adv 4 (X) of A in the security game is defined as: adv4 (A) = |Pr[b/ =b] — 1|.

We also consider extensions of PANDA to a setting that supports writes to the database. If the database
is public and shared by all clients, then the location and content of write operations is inherently public as
well. However, we still want to maintain privacy and anonymity for read operations, as well as anonymity for
write operations. We call this a public-writes PANDA and it may, for example, be used to implement a public
message board where clients can anonymously post and read messages, while hiding from the server which
messages are being read. We also consider an alternate scenario where each client has her own individual
private database which only she can access. In this case we want to maintain privacy and anonymity for both
the reads and writes of each client, so that the server does not learn the content of the data, which clients
are accessing their data, or what parts of their data they are accessing. We call this a secret-writes PANDA.

Public-writes PANDA scheme consists of log L levels of increasing size (growing from top to bottom),
each containing size-A “buckets” that hold several data blocks, and implemented with a B-bounded-access
PE-PANDA scheme. To initialize our PANDA scheme, we generate PE-PANDA public- and secret-keys for
every level. Initially, all levels are empty, except for the lowest level, which consists of a PE-PANDA for the
database D. read operations will look for the data block in all levels (returning the top-most copy), whereas
write operations will write to the top-most level, causing a reshuffle at predefined intervals to prevent levels
from overflowing. We note that adding a new copy of the data block (instead of updating the existing data
block wherever it is located) allows us to change only the content of the top level. This is crucial to obtaining
a non-trivial scheme, since levels are implemented using a read-only PANDA, and so can only be updated
by generating a new scheme for the entire content of the level, which might be expensive (and so must not
be performed too often for lower levels).

Notice that since the levels are implemented using a PE-PANDA scheme (which, in particular, is only
secure against a bounded number of accesses), security is guaranteed only as long as each level is accessed
at most an a-priori bounded number of times. To guarantee security against any (polynomial) number of
accesses, we “regenerate” each level when the number of times it has been accessed reaches the bound. This
regeneration is performed by running the garble algorithm of the PE-PANDA scheme with a new label,
consisting of the epoch number of the current level and the number of regeneration operations performed
during the current epoch (this guarantees that every label is used at most once in each level). In summary,
each level can be updated in one of two forms: (1) through a reshuffle operation that merges an upper level
into it; or (2) through a regenerate operation, in which the PE-PANDA of the level is updated (but the actual
data blocks stored in it do not change). We note that (unlike standard hierarchical ORAM) the reshuffling
and regeneration need not be done obliviously, since the server knows the contents of all levels.

In [12], we show the following results.

Theorem 2. Assuming the existence of FHE, there exists a public-writes PANDA with n clients, t collusion
bound, database size L and security parameter A such that, for any constant € > 0, we get:

— The client/server run-time per read operation is t - poly(\,log L).
— The client run-time per write is O(log L), and the server run-time is t - L€ - poly(A,log L).
— The server storage is t - L**€ - poly(\,log L).

The same results as above hold for secret-writes PANDA, except that the client run-time per write increases
to t - poly(A,log L), and L now denotes the sum of the initial database size and the total number of writes
performed throughout the lifetime of the system.

4 Rewindable Oblivious RAM

We define two ORAM variants which guarantee security against rewinding attacks. They are both used in
the context of Fully Homomorphic Encryption for RAM [11]. We will focus on Rewindable ORAM as a
stand-alone building block however. The two notions differ in the type of attacks they can handle. We first
recall the notion of an access pattern, and the standard ORAM definition [8,9,15].

Access pattern A length-q access pattern) consists of a list (opl,vall,addrl)KKq of instructions, where
instruction (op;,val;, addr;) denotes that the client performs operation op; € {read,write} at address addr,
with value val; (which, if op; = read, is).

Informally, an ORAM scheme allows a client to store his database, or “logical memory”, remotely on a
server, or “physical memory”. Following a Setup procedure which generates client and server states, reads
and writes to logical memory are performed through an interactive protocol Access between the client and
server, where in each round the client generates a read request and an update request for the server. The
access pattern to physical memory during the Access protocol completely hides from the server the database
contents and access pattern to logical memory (see the full version for the formal definition).

4.1 Rewindable ORAM Security

We now describe a game that formalizes the security of our ORAM variants. The adversarial server in the
game chooses a pair of initial databases, and (as in standard ORAM) two sequences of access patterns, with
the goal of distinguishing between the executions of these sequences on the two databases. Unlike standard
ORAM, the adversarial server in our security game can also rewind the execution to a previous state, and
continue the execution from that state.

Definition 5 (Rewindable ORAM security game). The ORAM security game is run between an ad-
versary A, and a challenger C.

1. A sends to C two databases D°,D' € {0,1} .
2. C picks a random bit b + {0,1}, and runs Setup (1’\7 Db) to obtain client and server states sk, State. C
sends State to A.
3. Let Stateg = State and skg = sk. Repeat the following poly (X) times, where in the i’th iteration:
(a) A sends to C an index j; € {0,1,...,i—1}, as well as two sequences of instructions QY
(OPi,zv3dd"?,l»Va|?,z)le[qi]7 and Q} = (opi’l,addril,l,valg’l) where q; < poly ()), op;,
{read, write}, addrgl,addr;l € [N], and vaI?,l,vaI;l €{0,1}.

(b) Starting from server state State;, and client state sk;,, C executes Access (opi7l,addr?7l,va|?,l) for

m

lelq:)’

1 <1< g;. Let sk;,State; denote the updated client and server states (respectively) at the end of this
sequence of executions. Let acc; denote the access pattern to physical memory during this sequence
of Access executions.

(c) C sends acc; to A.

4. A outputs a bit b, and his advantage in the game is defined as Pr[b=b'] —

(SIS

Discussion. The rewindable ORAM security game of Definition 5 captures several security variants, depend-
ing on the permissible choice of j;. First, notice that the security game with poly(\) iterations in the security
game, when the adversary is restricted to choose j; = i—1 in each iteration, and D = D', yields the standard
ORAM security definition without rewinds. Second, restricting the adversary to choose j; = {0,i— 1} in
every iteration ¢ means the adversary can only rewind the execution to the initial state, but can adaptively
decide to “extend” a previous execution. Restricting the adversary to choose j; = 0 in every iteration corre-
sponds to an adversary that can only rewind the execution to the initial state, where any rewind “finalizes”
the current branch of the execution, and the adversary cannot later extend it. In the most general form,
when j; can take any value in {0,1,...,4 — 1}, we can assume without loss of generality that the adversary
chooses a length-1 sequence in each iteration of the security game. This corresponds to an adversary that
can rewind the ORAM to any intermediate state. The security game of Definition 5 can be used to capture
various other security variants; we choose to focus on the latter two notions. Formally,

Definition 6 (Any-State Rewindable ORAM (ASR-ORAM)). We say that an ORAM scheme is
Any-State Rewindable (ASR) if any PPT adversary A has a negl(\) advantage in the rewindable ORAM
security game of Definition 5.

Definition 7 (Initial-State Rewindable ORAM (ISR-ORAM)). We say that an adversary A is
initial-state restricted if in every iteration i of the rewindable ORAM security game of Definition 5, it chooses
ji = 0. We say that an ORAM scheme is Initial-State Rewindable (ISR) if any initial-state restricted PPT
adversary A has a negl(\) advantage in the rewindable ORAM security game of Definition 5.

4.2 Rewindable ORAM Construction

Constructing rewindable (even ISR-) ORAM appears to be difficult, and none of the standard ORAM
constructions suffice. Indeed, all standard ORAM constructions follow the “balls and bins” model in which
each data block is represented as a “ball” and stored on the server in some “bin”. Such structures cannot
guarantee even ISR-ORAM security since, as noted above, if the client state is reset between accesses then
the server can distinguish whether the client is accessing the same data block or not (when accessing the
same block, the client will access the same “ball” on the server). Thus, we need fundamentally different
techniques than prior ORAM constructions.

Our new approach to rewindable ORAM leverages SK-DEPIR [2, 5], which can be viewed as a stateless
read-only ORAM. Informally, following a setup phase in which the client receives a secret key k and the
server receives an encoding D of the database D, the client can privately read arbitrary locations i of D by
reading a few positions in D, without having to update the client/server state during the process. The server
should learn nothing about the underlying locations i being read. In particular, we can think of SK-DEPIR
as a very restricted form of ISR-ORAM for the class of RAM program P;(D) that read and output the i’th
location of D.

ISR-ORAM from SK-DEPIR and standard ORAM. The ISR-ORAM scheme is conceptually simple. Recall
that SK-DEPIR is read-only, while ISR-ORAM supports arbitrary RAM programs that can both read and
write to the database. In both cases, we can rewind the state to its initial value after an execution while
maintaining privacy of the underlying access pattern. The high-level idea is to use the SK-DEPIR to support
reads, and use a standard ORAM scheme to support writes. _

Specifically, the initial states in our ISR-ORAM are the client and server states k, D of the SK-DEPIR.
To execute a RAM program P, the client initializes a fresh copy of a standard, non-rewindable ORAM O,
which is initially empty. Writes are executed using the ORAM scheme O. To read some location i, the client
reads i from both the ORAM O and the SK-DEPIR. If location i was found in O, the client uses that value,
otherwise he uses the SK-DEPIR value. Thus, the client always gets the freshest copy of the value in any
location. Note that rewinding the ISR-ORAM client/server to their initial states erases all information about
O (which was initialized only in the first access), so we do not require rewindable security from O: the next
access will instantiate a completely fresh ORAM scheme O for the execution. The scheme is described in [11].

Theorem 3 (ISR-ORAM). Assume there exist OWFs and SK-DEPIR. Then there exists an ISR-ORAM
scheme.

Moreover, if the Query and Dec algorithms of the SK-DEPIR scheme have poly(\) complexity for databases
of size N and security parameter X, and the client (resp., server) state has size poly (A) (resp., poly (A, N)),
then the Access complezity of the ISR-ORAM is poly(\), and the client (resp., server) state has size poly(\)

(poly(A, V)).

ASR-ORAM from SK-DEPIR via a hierarchical structure. The ASR-ORAM construction is more complex.
ASR-~-ORAM should support repeated sequential execution of different programs, and remain secure when the
adversary can rewind to any intermediate state from which it starts a new sequence of program executions.
Unfortunately, this precludes our previous solution of storing intermediate values written during the execution
in a standard, non-rewindable ORAM: rewinding to an intermediate point will rewind the ORAM.

We solve this problem by combining SK-DEPIR with techniques from hierarchical ORAM [9, 15]. In
particular, our ASR-ORAM consists of a hierarchy of SK-DEPIR schemes of exponentially increasing size,
where the top-most scheme has size 1 and the bottom-most scheme has size N. Initially, the data is entirely
contained in the bottom-most scheme. To read a location i we try to read it using the SK-DEPIR schemes at

Fig. 1. Functionality Fr.cm

1. On input of (Init, D~B), set DB = D~B, return random additive shares of DB?® to party s.
2. On input additive shares of (op, elem, DB) from two parties do:
(a) if op = read then set o = DB[addr]
(b) if op = write then set o = DB[addr] and DB[addr] = val
(c) Let o', 0® be random, additive shares of 0, and DB* be random additive shares of DB. Return (o°, DB®)
to party s.

all levels, and use the value found in the top-most scheme that contains . To write a location i, we write it to
the top level (which requires re-generating its SK-DEPIR, scheme). As in Hierarchical ORAM this requires
“reshuffles”: every pre-determined number of writes, we need to merge sufficiently many of the top levels
to ensure that their combined size is large enough to hold the database. Since levels are implemented using
SK-DEPIR, this requires reading and re-writing the levels in their entirety. However, as levels get larger,
they are “reshuffled” with decreasing frequency so the overall amortized complexity is low.

Notice that reshuffles reveal no information, even under arbitrary rewinding, because they occur at pre-
determined times (independent of the access history), and reads are secure by the security of the (stateless)
SK-DEPIR even under arbitrary rewinding.

Theorem 4 (ASR-ORAM). Assume the existence of OWFs and SK-DEPIR, then there exists an ASR-
ORAM scheme. Moreover, if for e > 0 the Query and Dec algorithms of the SK-DEPIR scheme have N€ -
poly()\) complexity, and Process has N**€-poly (\) complexity for databases of size N and security parameter
A, then:

— The complexity of Access is N€ - poly (\).
— The client state has size poly ()\), and the server state has size N'T¢ - poly (\).

5 Distributed ORAM with sublinear computation and constant rounds

Distributed Memory First introduced by Bunn et al. [3], the ideal functionality F,,ep, in Figure 1 captures
the behavior achieved by a DORAM executed through secure computation. The database is initialized on
secret shares of the database, and subsequent accesses are also secret shared, as is their resulting output.
Previous constructions have focused on achieving constant rounds or sublinear server computation. Our
construction is the first to achieve both constant rounds and sublinear server computation.

5.1 DORAM Construction

In this section, we describe both of our DORAM constructions in more detail.

Sublinear DORAM We start with describing the original square-root ORAM (introduced by Goldreich and
Ostrovsky [10]) that our construction is based on. There is a single read-only array of size N, which we call
the store, and a writable stash of V/N size. Elements in the store are (address, value) pairs; at initialization,
the elements are permuted with a permutation known only to the client, and all elements are encrypted. To
perform a read at a particular address, the client checks the stash using a linear scan; if not present then it
reads the permuted element from the read-only store, and if present then it is retrieved from the stash and
a random ‘dummy’ element is made to the store instead. The newly-read element is placed in the stash, in
order to maintain the invariant that each element is read only once from the store. In the case of a write, a
dummy is read from the store and the element is written in the stash. After enough queries have been made

to fill the stash, a duration that which we call an epoch, the elements from the stash are reshuffled back into
the main store, with only the newest write at each location being kept.

While the basic square-root ORAM construction achieves constant rounds with sublinear communication
and server computation, it is non-trivial to convert it to a two-party DORAM. There are two major issues
incurred by shifting this to the two party case: (1) representing the permutation over the elements of the
store and (2) merging the elements from the stash back into the store.

We first discuss how to represent the permutation that maps addresses to physical locations in the store.
In [18], which is also based on square root ORAM, they choose to represent the permutation as a shared array
in recursive ORAMSs. This improves computation complexity but leads to O(log N) rounds of communication.
To maintain constant rounds, we must instead find a compact representation of the permutation. We look
for inspiration from the original square-root scheme. There, they generate a random ‘tag’ for each element
in the store using a random oracle and then sort the elements according to the tag. A lookup then involves
only a random oracle evaluation and a binary search across the sorted elements. However, because it is a
single server scheme, they must use an oblivious sorting network in order to break the correlation between
items in different epochs, which does not run efficiently in constant rounds. We leverage the fact that we
have a two servers to break up the oblivious sort into its two components, ‘oblivious’ + ‘sort’. To prevent
the server from mapping items between epochs, we use a simple constant round functionality to obliviously
permute elements that allows each server to permute the elements in turn. As long as one server is honest, the
data is permuted obliviously. This allows us to generate the tags using an oblivious pseudorandom function
(OPRF), rather than a random oracle, on the newly obliviously permuted elements and then sort the tags
locally. Lookup again is just an OPRF evaluation on the address shares and then a local binary search on
the store.

The second challenge arises during the reshuffling phase of the protocol. In the original square-root
ORAM, elements are simply moved back into their original locations (updated elements in the store, dummies
back in the stash) by executing another oblivious shuffle. To solve this in constant rounds, we again exploit
the ability to obliviously permute elements by using our two server architecture. In order to do that though,
we must ensure that the elements that we are permuting do not contain any duplicates. For example, if
a read was executed on index i, there would be two copies of element i, one in the stash and one in the
store. To solve this issue, we note that the elements that have been read in the store is public knowledge to
both servers. As long as we maintain the invariant if an element has been read (or written to), it is in the
stash, and each element only occurs in the stash once, we can simply concatenate elements in the stash with
the unread elements in the store at the end of an epoch. Once we have concatenated the elements we can
obliviously permute them to get our new store. The stash can then just be filled with new dummy elements.

A more detailed discussion of our construction can be found in [13]

DORAM with Unlimited Reads. Thanks to the modularity of our base scheme, the components are
easily extensible. We improve the performance of the read-only data store while keeping the rest of the
construction (the stash, our periodic shuffling technique at the end of each epoch, etc) mostly intact.

The separation of our read-only store from a read-and-writable stash suggests an intriguing tradeoff: if
we are willing to leak whether each operation is a read or a write operation, then it is beneficial to design
an efficient read-only store that supports unlimited reads, and only pay for accessing the stash on (hopefully
infrequent) write operations. This optimization allows us to increase the duration of each epoch, or in other
words to amortize the cost of each shuffle over more reads. Concretely, in a scenario where the ratio of
reads-to-writes is about N-to-1, then for any constant € > 0 we can construct a read-only store where whose
amortized cost per query is just Ox(N€). Here, the notation Oy means that we suppress poly(\) terms in
order to focus on the dependency on the database size. By reducing the size of the stash to Oy (N€), we can
support write operations with this performance as well.

Our strategy to construct a unlimited-reads store might seem counter-intuitive at first: we start from a
doubly efficient PIR [1,4] that supports unlimited reads and convert it into a two-server distributed data
store. A doubly efficient private information retrieval (DEPIR) scheme is a client-server protocol for oblivious
access to a public dataset that only requires sublinear computation for both the client and server operations

10

and constant rounds of communication between the two. At first glance, it may seem that a 1-server DEPIR
is a strictly stronger primitive than a 2-server DORAM, so we might expect to construct the latter generically
as a secure computation of the former. However, this intuition isn’t true because there are three properties
that we aim to satisfy with DORAM, but that (even a doubly efficient) PIR, does not:

— Support for writes,

— Hiding the contents of the database, in addition to access patterns, and

— Ensuring that the secure computation is constant rounds when the two parties collectively emulate the
(sublinear but not constant time) client, in addition to the client-server communication.

The main observation underlying this approach is that the SK-DEPIR protocol of Canetti et al. [4] is
highly amenable toward secure computation since its operations mostly involve linear algebra in a finite field
that can be done purely locally, plus bitstring and set operations that are easy to handle in constant rounds.
The Canetti et al. SK-DEPIR construction is based on a locally decodable code (LDC) in the style of a
Reed-Muller code, which encodes a dataset as a multivariate polynomial. As a result, the most challenging
part of our multiparty computation protocol involves securely emulating the client’s procedures to evaluate
or interpolate a multivariate polynomial at O(N) points. The naive methods for polynomial evaluation
(via application of the Vandermonde matrix) or polynomial interpolation (via the Lagrange interpolation
polynomial) involve multiplication of a public matrix by a secret-shared vector, which can be done non-
interactively but requires O(N?) computation, which is too slow for our purposes.

Given a binary field F = GF(2%) and a subspace H™ C F™, we construct secure computation protocols
for evaluating or interpolating an m-variate polynomial p € Flxy,...,2,,] on all points in H™ in time that
is quasilinear (rather than quadratic) in |[H™|. This protocol may be of independent interest, and in our
protocol it is needed to achieve our goal of sublinear computation for the overall DORAM scheme. We
construct this secure computation scheme in two stages: first we construct a secure computation protocol
for the Additive Fast Fourier Transform protocol of Gao and Mateer [6] for univariate polynomials over a
binary field, and then we bootstrap this protocol to handle multivariate polynomials by using recursion on
the number of variables in the polynomial as previously shown by Kedlaya and Umans [14]. All operations in
this protocol reduce to linear combinations of secret variables, so the entire computation can be done locally
by each party on their own boolean secret shares without the need for any communication.

6 Future Work & Milestones

January In early January I am targeting to propose my thesis.

January - May There are two paths for potential work during the next several months:

1. Explore the applications of Rewindable ORAM to a multi-client ORAM setting. In particular, in a setting
where clients cannot communicate with each other and must rely on the server to represent an accurate
accounting of the state - is Rewindable ORAM required to achieve security in this setting without any
additional timing assumptions?

2. Expand Rewindable ORAM to a ‘rewindable’ Garbled RAM setting. In existing Garbled RAM construc-
tions, the list of programs the client wishes to execute either need to be specified up front, or in the
adaptive setting, iteratively. A client cannot go back and ‘branch off’ of a previous state, which in a
setting where there a many clients wanting to run different programs on the same initial copy of the
database, can be prohibitive to garble dataset for them all independently.

June In June I hope to defend my thesis.

References

1. Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally and privately? In: TCC (2).
Lecture Notes in Computer Science, vol. 10678, pp. 662—693. Springer (2017)

11

10.

11.

12.

13.

14.

15.
16.

17.

18.

Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally and pri-
vately? In: TCC‘17, Proceedings, Part II. pp. 662-693 (2017). https://doi.org/10.1007/978-3-319-70503-3_22,
https://doi.org/10.1007/978-3-319-70503-3_22

. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed ORAM. In: SCN. Lecture Notes

in Computer Science, vol. 12238, pp. 215-232. Springer (2020)

Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private information retrieval. In: TCC (2).
Lecture Notes in Computer Science, vol. 10678, pp. 694-726. Springer (2017)

Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private information retrieval.
In: TCC‘17, Proceedings, Part II. pp. 694-726 (2017). https://doi.org/10.1007/978-3-319-70503-3-23,
https://doi.org/10.1007/978-3-319-70503-3_23

Gao, S., Mateer, T.D.: Additive fast fourier transforms over finite fields. IEEE Trans. Inf. Theory 56(12), 6265—
6272 (2010)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169-178 (2009).
https://doi.org/10.1145/1536414.1536440, http://doi.acm.org/10.1145/1536414.1536440

Goldreich, O.: Towards a theory of software protection and simulation by oblivious RAMs. In: STOC’87. pp.
182-194 (1987)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431-473
(1996)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431-473
(1996)

Hamlin, A., Holmgren, J., Weiss, M., Wichs, D.: On the plausibility of fully homomorphic encryption for rams.
In: CRYPTO (1). Lecture Notes in Computer Science, vol. 11692, pp. 589-619. Springer (2019)

Hamlin, A., Ostrovsky, R., Weiss, M., Wichs, D.: Private anonymous data access. In: EUROCRYPT (2). Lecture
Notes in Computer Science, vol. 11477, pp. 244-273. Springer (2019)

Hamlin, A., Varia, M.: Two-server distributed ORAM with sublinear computation and constant rounds. TACR
Cryptol. ePrint Arch. 2020, 1547 (2020)

Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: FOCS. pp. 146-155. IEEE Com-
puter Society (2008)

Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC’90. pp. 514-523 (1990)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1-34:40
(2009). https://doi.org/10.1145/1568318.1568324, http://doi.acm.org/10.1145/1568318.1568324

Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Foundations of secure
computation 4(11), 169-180 (1978)

Zahur, S., Wang, X., Raykova, M., Gascén, A., Doerner, J., Evans, D., Katz, J.: Revisiting square-root ORAM:
efficient random access in multi-party computation. In: IEEE Symposium on Security and Privacy. pp. 218-234.
IEEE Computer Society (2016)

12

